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ABSTRACT 
 

Single server retrial G-queue with two fluctuating modes of service and feedback is analyzed. If the server is idle 

upon the arrival of a customer, then the customer receives either of  twoservices. Otherwise, he joins the orbit. After 

completion of service, unsatisfied customer may join the orbit as a feedback customer or depart from the system. 

Arrival of a negative customer makes the server to failure state and removes the positive customer being in service 

from the system. Performance analysis are obtained using supplementary variable technique. Stochastic 

decomposition law is verified. Finally, numerical illustrations are provided. 

Keywords: Retrial queue  -negative customers – bernoulli feedback. 

I. INTRODUCTION 

The phenomenon of feedback in the retrial queueing 

system occurs in many practical situations. Choi and 

Kulkarni [1] studied an M/G/1 feedback retrial queue. 

Many authors including Krishnakumar et al. [3,4,5], 

Mokaddis et al. [7] and Lee and Jang [8] analysed retrial 

queueing systems with feedback. Ramanath and 

Lakshmi [9] studied M/G/1 retrial queue with second 

multi-optional service and feedback.  

 

Queue with negative arrivals called G-queue was first 

introduced by Gelenbe [2] with a view to modeling 

neural networks. In recent years, a variety of industrial 

applications have created interest in the modeling of 

reliability in G-queues. Liu et al. [6] analysed an M/G/1 

G-queue with pre-emptive resume and feedback under 

N-policy vacation. Wu and Lian [10] discussed an 

M/G/1 retrial G-queue with priority resume, Bernoulli 

vacation and server breakdown. In this paper, we 

analyzed batch arrival retrial G-queue with two 

fluctuating modes of service and feedback. 

 

 

 

 

II. METHODS AND MATERIAL 

 

A. Model Description 

 

Consider a single server retrial queueing system with two types of independent arrivals, positive and negative. 

Positive customers arrive according to Poisson process with rate 


 . The server provides two types of service- type 

1  and type 2. Customers choose type 1  service with probability p1 or type 2 service with probability p2 (p1+p2=1). 

If the positive customer finds the server free, then the customer receives any one of the two services immediately. 

Otherwise he joins the retrial queue.The retrial time is generally distributed with distribution function A(x), density 

function a(x), Laplace-Stieltje’s transform A*(θ) and conditional completion rate η(x)=a(x)/[1-A(x)]. 
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The service time of type i(i=1,2) follows a general distribution with distribution function Bi(x), density function 

bi(x), Laplace stieltje’s transform Bi*(θ), nth factorial moments µin and conditional completion rate  µi(x) = 

bi(x)/[1-Bi(x)], for (i=1,2). After receiving service, the customer may again join the orbit as a feedback 

withcondition  probability δ or depart the system with its complementary probability 1-δ. 

 

Negative customers arrive according to Poisson process with rate 
 . The arrival of a negative customer removes 

the positive customer being in service from the system and makes the server breakdown. When the server fails, it 

stops providing service and is sent for repair immediately. The repair  time also follows a general distribution with 

distribution function R(x), density function r(x), Laplace stieltje’s transform R*(θ), nth factorial moments rn and 

conditional completion rate  β(x) = r(x)/[1-R(x)]. Various stochastic process involved in the system are independent 

of each other. 

 

B. Analysis of the Steady State Distribution 

 

The state of the system at time t can be described by the Markov process 0} t(t); N(t), , C(t) { = 0}tX(t); {   , 

where C(t) denotes the server state 0,1,2 or 3 according as the server being idle, busy in type-1 service, busy in type 

-2 service or under repair. N(t) corresponds to the number of customers in the orbit . If C(t)=0, then ξ(t) represents 

the elapsed retrial time. If C(t) =1 or 2, then ξ(t) represents the elapsed service time. If C(t)=3, then ξ(t) represents 

the elapsed repair time of the failed server. 

 

For the process { C(t) ; t≥0}, define the probabilities 

I0(t)  =   P{C(t)=0,N(t) = 0}  

In(x,t)dx     =   P{C(t)=0,N(t) = n,  x <  )t( x+dx} ,n  1 

Pn
(i)

(x,t)dx    =   P{C(t)=i,N(t) = n,  x <  )t( x+dx} ,n  0,i=1,2 

Rn(x,t)dx   =   P{C(t)=3, N(t)= n,  x <  )t( x+dx} , n 0  

 

The steady state equations governing the model under consideration are 
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with boundary conditions  
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To solve the above equations, define the probability generating functions

 

I(x,z) = 


1n

n
z)x(nI  ,            P

(i)
(x,z)  = 



0n

nz)x()i(
n

P ,i=1,2  and    R(x,z) = .
0

)(


n

n
zxnR

 
Multiplying equations (2) by z

n
 and summing over all possible values of n, we get 
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Solving the partial differential equation (11) , we obtain 
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Solving the differential equations obtained from equation (3) and (4), we get    
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Equations (5) to (10) yield 
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Using equation (12) in equations (16) and (17), we have 

 )]()1()[,(),0( *

0

)()(    AzzzoIzI
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p
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 , i=1,2                                                               (19) 

 

Using equation (13) in (18), we obtain 
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Using equations (13) , (14), (19) and (20) in equation (15) and simplifying, we have 
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Using equation (21), the equations(19) and (20), yield 
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Now the expressions of I(x,z), P
(i)

 (x,z) and R(x,z) become 
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The partial probability generating functions I(z),P
(i)

(z) and R(z) are derived as 
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The unknown constant I0 can be obtained by using the normalizing condition
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Probability that the server is idle in the non-empty system is given by 
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Probability that the server is busy in type i service  is given by 
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Probability that the server is under repair  is given by 
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The probability generating function of the orbit size is  
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The probability generating function of the system size is  
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C. Performance Measures 

 

Mean number of customers in the orbit is derived as  

Lq = 
)1(2
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where N(z) and D(z)are the numerator and denominator of Pq(z) 
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Mean number of customers in the system is 

 

Ls = 
2

11

2

)1()1()1()1(
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                         (38) 

where N1(z) denotes the numerator of Ps(z) 

 

))]()((1[)1( *

11

*

11

'

1

   BpBpN  
 

)]())()()(1[(2)1( 212111

*

22

*

11  ppBpBpN  

 
 

D. Reliability Indices 

 

The system availability A(t) at time t  is the probability that the server is either working for a customer or 

in an idle period. Then under steady state condition availability of the server is shown to be  

A= 1-R =  
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Steady state failure frequency of the server is  

F= 
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E. Stochastic Decomposition 

 

Theorem The decomposition property states that the number of customers in the system in steady state at 

a random point of time (Ls) is distributed as the sum of two independent random variables, one of which is 

the number of customers in the corresponding standard queueing system in steady state at a random point 

of time L and  the other random variable is the number of customers in the system when the server is idle. 
 

 

III. RESULTS AND DISCUSSION 

F. Proof 

 

The probability generating function π(z) of the system size in the classical single arrivalqueue with 

negative arrivals  and  feedback is 

 

π(z)=[z-1]L1.L2/S1. S2                                                                                                                                                                            (41) 
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The probability generating function χ(z) of  the number of customers in the orbit when the system is idle is 

given by  
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From equations (36),(41) and (42), it is observed that probability generating function of the number of 

customers in the system Ps(z) is decomposed as   Ps(z) = π(z) χ(z). 

  

Hence,  Ls = L + LI . 

 

G. Numerical Results  

Numerical examples are presented to study the effect of the parameters on the system characteristics. It is 

assumed that the retrial time, service time and repair time are exponentially distributed with respective 

parameters ƞ ,µi and r where i=1,2. 

 

The following arbitrary values are selected for the parameters in such a way that stability condition holds, 

λ
+
=0.7, λ

- 
=11, ƞ=0.9, µ1 =3.6, µ2=0.1, r1=2, r2=2, p1=0.8, p2=0.2, δ=0.9 and           1-δ=0.1. 

 

Effect of the Parameters on the performance measures I0 – the probability that the server is idle in empty 

system, I- the probability that the server is idle in non-empty system, P
(i) 

– the probabilitythat the server is 

busy in type 1 or type 2 service, R- the probability that the server is under repair are displayed in figure 1 

to 4.  

 

From the figures it is observed that Lq decreases for increasing values of λ
- 
, µ1 , ƞ, r1 and r2  and increasing 

for λ
+ 

, µ2 and δ. 

 
 
             Figure 1. Effect of (µ1,λ

+
) on Lq                            Figure 2.  Effect of (r1,ƞ) on Lq 
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              Figure 3. Effect of (r2,δ) on Lq                                   Figure 4.  Effect of (µ1,λ

+
) on Lq 
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